# covariant derivative

- derivada covariante

*English-Spanish mathematics dictionary.
James G., James R.C..
1964.*

### Mira otros diccionarios:

**Covariant derivative**— In mathematics, the covariant derivative is a way of specifying a derivative along tangent vectors of a manifold. Alternatively, the covariant derivative is a way of introducing and working with a connection on a manifold by means of a… … Wikipedia**Gauge covariant derivative**— The gauge covariant derivative (pronEng|ˌgeɪdʒ koʊˌvɛəriənt dɪˈrɪvətɪv) is like a generalization of the covariant derivative used in general relativity. If a theory has gauge transformations, it means that some physical properties of certain… … Wikipedia**Exterior covariant derivative**— In mathematics, the exterior covariant derivative, sometimes also covariant exterior derivative, is a very useful notion for calculus on manifolds, which makes it possible to simplify formulas which use a principal connection. Let P → M be a… … Wikipedia**Derivative (generalizations)**— Derivative is a fundamental construction of differential calculus and admits many possible generalizations within the fields of mathematical analysis, combinatorics, algebra, and geometry. Derivatives in analysis In real, complex, and functional… … Wikipedia**Covariant transformation**— See also Covariance and contravariance of vectors In physics, a covariant transformation is a rule (specified below), that describes how certain physical entities change under a change of coordinate system. In particular the term is used for… … Wikipedia**Covariant formulation of classical electromagnetism**— Electromagnetism Electricity · … Wikipedia**Generalizations of the derivative**— The derivative is a fundamental construction of differential calculus and admits many possible generalizations within the fields of mathematical analysis, combinatorics, algebra, and geometry. Contents 1 Derivatives in analysis 1.1 Multivariable… … Wikipedia**Lie derivative**— In mathematics, the Lie derivative, named after Sophus Lie by Władysław Ślebodziński, evaluates the change of one vector field along the flow of another vector field.The Lie derivative is a derivation on the algebra of tensor fields over a… … Wikipedia**Material derivative**— The material derivative[1][2] is a derivative taken along a path moving with velocity v, and is often used in fluid mechanics and classical mechanics. It describes the time rate of change of some quantity (such as heat or momentum) by following… … Wikipedia**Directional derivative**— In mathematics, the directional derivative of a multivariate differentiable function along a given vector V at a given point P intuitively represents the instantaneous rate of change of the function, moving through P in the direction of V. It… … Wikipedia**Exterior derivative**— In differential geometry, the exterior derivative extends the concept of the differential of a function, which is a form of degree zero, to differential forms of higher degree. Its current form was invented by Élie Cartan.The exterior derivative… … Wikipedia